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An equation for the current a t a concentration-polarized spherical electrode is derived for the case in which the ratio of 
concentrations of oxidized and reduced forms at the electrode surface is governed by the Nernst equation, the diffusion co
efficients are equal, and the potential changes linearly with time. The result can be expressed as the sum of two terms, the 
current at a plane electrode under the same conditions, and a second term involving only easily calculable functions. Evalu
ation of the first term is discussed. 

Nernst-controlled currents a t s tat ionary micro-
electrodes with linearly changing potential have re
cently received considerable attention. Randies,1 

Sevcik,2 and Berzins and Delahay3 t reated the case 
in which the equations of linear diffusion could be 
assumed to apply. Nicholson4 extended the in
vestigation to cylindrical electrodes and Franken-
thal and Shain5 to spherical electrodes. 

Because these cases are of considerable potential 
importance for analytical and physico-chemical 
techniques, the present work was undertaken with 
the hope of simplifying some of the results of these 
previous workers. The case t reated b y Franken-
thal and Shain is approached in a somewhat dif
ferent manner by means of the Laplace transfor
mation. A modification of Sevcik's equation is 
proposed for the calculation of current at a plane 
electrode. 

Theory.—Consider the reaction O + ne~ —*• R 
a t a spherical electrode with diffusion the only 
factor affecting the movement of these species in 
the solution. The concentration of the oxidized 
form, Co, as a function of time, t, and radial dis
tance from the center of the electrode, r, is governed 
by Fick's second law of spherical diffusion 

dC0 n P 2 C 0 , 2dC0- | . . . 

where Do is the diffusion coefficient of the oxidized 
form. A corresponding equation for the reduced 
form can be writ ten in which the subscript O is re
placed by subscript R. 

The initial conditions are Co = C*o and CR = 
C*R when t = O where C* denotes concentration 
a t the beginning of the experiment. The bound
ary conditions are, first, Co -»• C*o and CR —*• C*R 
when r —*• =° . The sum of the fluxes of the oxidized 
and reduced forms a t the electrode surface is zero 

A > ^ + D * ^ - O a t r - r „ (2) 

where r0 is the radius of the electrode. The ratio 
of the concentrations at the surface is given by the 
Nernst equation 

- ^ = 0 e x p ( - a O at r = n (3) 
C R 

where 
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Ei is the potential a t the s ta r t of the experiment; 
a = nFw/RT, w is the rate of change of potential 
with t ime; and the other symbols have their usual 
thermodynamic significance. 

These conditions are for the case in which both 
species are soluble in the solution. The case in 
which the reduced form is soluble in the electrode 
material is much more difficult because of the finite 
volume of the electrode phase. The solution for 
the present case is, however, an excellent approxi
mation. This is so because the region in which 
diffusion of the reduced species is the limiting factor 
is a t the foot of the wave where the spherical con
tribution is small and further where small devia
tions are not noticeable. In the experimentally 
important region of the wave, from approximately 
E0 on, it is the diffusion process of the oxidized 
form which is most important in determining the 
shape of the wave. The same condition was im
plicitly imposed by Frankenthal and Shain5 in their 
calculations. They assumed t ha t the sum of the 
concentrations of the oxidized and reduced forms 
is constant a t the electrode surface. This is t rue 
for a spherical electrode with changing potential 
only when both species are soluble in the solution 
and their diffusion coefficients are equal. 

In the present approach also it has been assumed 
t ha t the diffusion coefficients are equal. The same 
assumption was made by Nicholson4 in the case of 
the cylindrical diffusion. The experimental re
sults indicate t ha t the error introduced by the as
sumption in t ha t case is negligible. By analogy, 
the same result would be expected here. 

The solution to the above-stated problem is given 
in Appendix I. I t can be seen tha t the current at 
a spherical electrode can be represented as 

i. = ip+ nFA C*o ? [ * -/i*( ^ 4 ] (4) 
n> Ll + 6 exp(—Oi)J 

where iP is the current which would be observed a t 
the corresponding plane electrode. 

The evaluation of current a t a plane electrode 
has been undertaken by several authors. Sevcik2 

evaluated expression 18 by approximating the inte
gral with a series. Randies,1 Nicholson,4 and 
Frankenthal and Shain5 have also calculated this 
current by numerical integration of Fick's second 
law. An inherently more accurate approach is as 
follows. The above expression is unsatisfactory 
for graphical integration because of the factor 
\/t — T in the denominator. However, integrating 
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by parts, the expression can be transformed into 

a2 C' , • tanhdnS - ar)/2 "I . . . 
2 JoV j- rcoshMln9-ar)72d TJ ( 5 ) 

Assuming d » 1 and substituting JX = In 6, z = 
at — ar, and y = at gives 

i - «F .4C*oA |— 2 V y exp(-M) + 

If, '
y ^ t a n h ( M - y + s)/2 ^." | ,„.. 

' cosh2 O - y + s)/2 

This expression can be evaluated readily by graph
ical integration and the results for the representa
tive value n = 6 are given in Table I. 

TABLE I 

CURRENT AT A PLANE ELECTRODE WITH LINEARLY CHANG

ING POTENTIAL" 

E - E'' 
(mv.) 

149.7 
136.1 
122.5 
108.9 
95.3 
81.7 
68.0 
54.4 
40. S 
27.2 
13.6 

i/nFAC*oVaD 

0.003 
.006 
.010 
.017 
.028 
.045 
.072 
.111 
.165 
.231 
.311 

£ - E'' (mv.) 

0 
- 1 3 . 6 
- 2 7 . 2 
- 3 2 . 6 
- 4 0 . 8 
- 5 4 . 4 
- 6 8 . 0 
- 8 1 . 7 
- 9 5 . 3 

- 1 0 8 . 9 

i/nFAC*oVaD 

0.378 
.425 
.445 
.446 
.440 
.419 
.390 
.361 
.334 
.310 

Since we have assumed d and hence /J. to be large, 
this term is small compared to i except at the foot 
of the current-time curve and can be ignored. 
That is 

i(y,u. + Ay) ̂  i(y — Ay.ii) (11) 

Discussion 
Plane Electrode.—The currents at a plane elec

trode calculated from equation 6 should be com
parable with the values obtained by Randies,1 

Sevcik,2 Nicholson,4 and Frankenthal and Shain6 

for this case. The normalized values of these au
thors for peak current are, respectively, 0.454, 
0.361, 0.451 and 0.456 as compared with 0.446 here. 
I t will be noted that Sevcik's value is lower than 
the rest by approximately 20%. It seems ex
tremely likely that his value was miscalculated by a 
factor of V i r /2 . With this correction his value for 
peak current (as well as for other values of y as 
nearly as can be estimated from his graphed data) 
is in good conformity with the others. 

In Fig. 1 the current-voltage curve from the 

" Initial potential assumed in these calculations was 
163 3 mv. Accuracy of the calculations is approximately 
1%. 

If an initial potential is chosen corresponding to 
d > > 1, the form of the current-time curve can be 
shown to be nearly independent of 6 and the curve 
is merely shifted laterally along the time axis for 
different initial potentials. The proof of this is 
analogous to the one given by Delahay6 for the case 
of irreversible reduction under the same conditions. 
Substituting into equation 18, the expression for 
current at a given time corresponding to y and a 
given initial potential corresponding to it is 

dz 
i(.y,n) -tf (7) 

I o Vz cosh2 (> + z - y)/2 

where 
K = nFAC*oVaD/Tr 

The current at the same time but with a more re
ducing initial potential corresponding to n + Ay is 

Hy111 + Ay)=K J* V i c o s h2 ()U + z" _ y + Ay) / 2 (8) 

With an initial potential /x but at a time corre
sponding to y — Ay, the potential applied to the 
electrode is the same as that in the case represented 
by Equation 21 but the current is 

o Vzcosh2(M + z - y + Ay)/2 ( 9 ) 

The difference in current between the two cases is 
Cy dz 

M 

(C) P. Delahay, T H I S JOURNAL. 75, 1190 (1953). 

(10) 

160 120 80 - 1 2 0 80 40 0 

E - B" (mv.). 
Fig. 1.—Theoretical current-voltage curves at plane and 

spherical electrodes: A, plane electrode—solid line, this 
work; triangles, Frankenthal and Shain5; circles, Nichol
son4; B, spherical contribution for (l/ra)(Do/nw)1/2 = 0 . 2 0 . 

values in Table I is compared with the calculated 
values of Nicholson4 and Frankenthal and Shain.5 

It will be observed that the agreement is excellent 
with small deviations at the foot of the wave. In 
this region, the initial potential assumed in the cal
culations makes an important contribution. Con
sequently, variation among values calculated by 
various authors is to be expected. This factor also 
accounts in part for the small discrepancies in the 
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values of peak current. These lat ter deviations 
are, however, within computational error. If, for 
very exact work, it is desired to have values of 
greater accuracy, the currents for any value of the 
initial potential can be calculated from those in 
Table I by applying the correction given by equa
tion 10. The graphical integration is readily per
formed in this case because, within the limits of 
integration, the argument remains bounded. 

Spherical Electrodes.—From equations 4 and 15 
the term representing the spherical contribution 
can be writ ten as 

nFAD(C*o - C9o)Ao 
where Cso is the instantaneous concentration of the 
reduced form a t the surface. The value of this 
term is plotted for a representative value of the 
parameters in Fig. 1. I t will be observed t ha t the 
curve of this term versus potential takes the same 
sigmoid form associated with the conventional 
polarographic wave. In fact, this spherical con
tribution can be writ ten approximately in the form 

nr t,, 
(12) 

where E0' is the formal electrode potential of the 
reaction; 4c is the spherical contribution a t any 
point, and isca is the limiting value. This last 
term is, of course, the same as the steady-state cur
rent which would be obtained a t a sufficiently large 
value of t a t a s tat ionary sphere with a constant 
applied potential such t h a t 6 « 1. 

While the current a t a plane electrode is propor
tional to the square root of the ra te of change of 
potential, the corresponding spherical contribution 
carries no such dependence. Consequently, as has 
been suggested b y Delahay,6 the la t ter te rm be
comes negligible a t very fast rates of potential scan 
and in particular in oscillographic work. 

Since equation 4 gives, within the accuracy of 
computation of the methods employed, the same 
theoretical predictions as the calculations of 
Frankentha l and Shain,5 their comparisons with 
experiment can be referred to for a test of its valid
ity. The agreement with experiment is excellent. 
For example, using the data of Ross, Demars, and 
Shain7 theoretical peak currents calculated by both 
methods for 1O - 4 M thallous ion agree with experi
ment to bet ter than 1%.8 

Conclusion.—A simplified equation for Nernst-
controlled currents in hanging-drop polarography 
is presented. This equation has been found to be 
in agreement with experiment.4 '7 '8 I t s use in the de
termination of diffusion constants and other param
eters of interest in electrochemical systems seems 
particularly inviting because of the inherently 
greater accuracy of the theory as opposed to t ha t of 
the corresponding polarographic approach. 

Appendix.—The problem outlined in the theo
retical section can be approached most easily by 
means of the Laplace transformation.9 T h e cal
culations are simplified if the following substi tutions 

(7) J. W. Ross, R. D. Demars and I. Shain, Anal. Chem., 28, 1768 
(1956). 

(8) I. Shain, private communication. 
(9) For a detailed discussion see, for example, R. V. Churchill, 

"Modern Operational Mathematics in Engineering," McGraw-Hill 
Book Co., New York, N. Y., 1954. 

are made 

u(r,t) = rC*o - rC0(r,t), v{r,t) = rCR(r,t) - rC*R 

The transforms of the Fick's law differential equa
tions are 

su = D(c)2u/br*), sv = D(b2v/dr2) 

where 5 is the transform variable and f(s) repre
sents the transform of the function / ( / ) . The solu
tions to these equations are of the form 

U = a exp(r0 - r) -y\~ + y exp(r - r0) - V ^ 

v = /3 exp( ro - r) ^ + S exp(r • r»} V ^ 
(13) 

(14) 

where a,j3,y and 8 are integration constants which 
must be determined from the transforms of the 
boundary conditions. They are functions of s bu t 
not of r. 

From the condition tha t u and v remain finite as 
r—*• co, i t follows t ha t 7 = 5 = 0. Transforming 
the boundary condition of equation 2 gives a = j3. 
From equations 12 and 13 it is apparent tha t a 
and /3 are simply the transformed values of the 
functions u and v, respectively, a t the electrode sur
face. Inverse transformation gives u = v a t r = 
ro- Combining this relation with the boundary 
condition of equation 3 gives an explicit expression 
for u and v at the electrode surface as a function of 
time. 

- * - * [ n n l £ 5 s ] <15» 
If the expression in brackets is represented as \p, the 
transformed expression for the concentration of the 
oxidized form becomes 

u = raC*oJ/ exp(r0 — r)-\/s/D 

The current a t the electrode is 

* = nFAD(bCo/br)t„t„ = nFADuJrS -

(16) 

tiFAD - (S«/5r)r.r t (17) 

The first term on the right-hand side can be eval
uated from equation 15. By substi tuting equation 
16 into equation 17 it can be shown tha t the second 
term in the lat ter equation is the inverse-transform 
of the expression 

nFAC*otVsD 

Since ^ = 0 a t t = 0, s is the transform of (d\f//dt). 
From this fact, by means of the convolution inte
gral9 the above expression becomes 

This is the same expression as t ha t obtained by 
Sevcik2 for the current a t a plane electrode under 
these conditions. 
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